Public finance of pneumococcal vaccine and pneumonia treatment in Ethiopia:

- an extended cost-effectiveness analysis

Kjell Arne Johansson

Department of global and public health University of Bergen Kjell.johansson@isf.uib.no

Stephane Verguet

Department of Global Health University of Washington

Plan

- Burden of pneomococcal disease and pneumonia in Ethiopia
- Health benefits across income groups
- Costs of public finance
- Income equivalent equity weights
- Private expenditures averted
- Financial protection

Objective

 To evaluate the expected <u>financial protection</u> and <u>health gains</u> of two publicly financed child health programs in Ethiopia, pneumonia treatment and pneumococcal vaccination

• Averages will be spread across income groups

DISEASE BURDEN AND DEMAND

BACKGROUND

Utilization of health services

Income quintile (poorest to richest)

- Coverage of pneumococcal vaccine (average is 38%, same as current DTP3)
- Coverage of pneumonia treatment (average is 32% and we increase by 10%)

Disease burden and income distribution in Ethiopia

- Deaths due to pneumococcal disease
- Deaths due to pneumonia
- Annual income (US\$/capita)

,total annual deaths = 21,200,total annual deaths = 57,800 ,GDP=357 US\$/capita, GINI index = 0.3

Saving children's lives and protecting people's health by increasing access to immunisation in poor countries

Total costs of public finance of both interventions (close to 40% coverage)

Income Quintile (Poorest to Richest)

per 1,000,000 US\$:

Deaths averted

Income Quintile (Poorest to Richest)

Income equivalent health gains - distributive weights applied

Ref: Fleurbaey M et al. Health Econ. 2012

Fair evaluation of PCV/antibiotics - income equivalent weights applied

Income Quintile (Poorest to Richest)

PCVPneumonia treatment

Financial protection

Household expenditures averted

Income quintile (poorest to richest)

PCV

Pneumonia treatment

Utility curve for financial protection

Ref. Finkelstein A., McKnight R. Journal of Public Economics. 2008; McClellan M, Skinner J, Journal of Public Economics. 2006;

Expected value of income

$$E(y) = (1 - I_0(y))y + I_0(y) (y - C_{treatment})$$

Expected value of utility $E_u(y) = (1 - I_0(y))u(y) + I_0(y)u(y - C_{treatment})$

Insurance value / certainty equivalent $V(y) = E(y) - u^{-1}[E_u(y)]$

Income quintile (poorest to richest)

Income quintile (poorest to richest)

Health gains & FRP - per \$1M spent

Deaths averted

Health gains & financial protection per \$1M

Deaths averted

Health gains & financial protection - *per \$1M*

Health gains & financial protection per \$1M

Deaths averted

Expected distribution of health gains & FRP (*per \$1M spent*)

Summary

Health distribution

PCV saves most lives. Equivalent health gains improves the expected utilities the most for pneumonia treatment by giving more weight to health benefits to the poor

<u>Financial protection</u>

Pneumonia treatment improves financial protection the most, especially for the poor

<u>Normative problem</u>

Save the most lives (PCV) vs. improving financial protection the most (pneumonia treatment)

