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Abstract: Several countries with generalized, high-
prevalence HIV epidemics, mostly in sub-Saharan Africa,
have experienced rapid declines in transmission. These
HIV epidemics, often with rapid onsets, have generally
been attributed to a combination of factors related to
high-risk sexual behavior. The subsequent declines in
these countries began prior to widespread therapy or
implementation of any other major biomedical preven-
tion. This change has been construed as evidence of
behavior change, often on the basis of mathematical
models, but direct evidence for behavior changes that
would explain these declines is limited. Here, we look at
the structure of current models and argue that the
common ‘‘fixed risk per sexual contact’’ assumption favors
the conclusion of substantial behavior changes. We argue
that this assumption ignores reported non-linearities
between exposure and risk. Taking this into account, we
propose that some of the decline in HIV transmission may
be part of the natural dynamics of the epidemic, and that
several factors that have traditionally been ignored by
modelers for lack of precise quantitative estimates may
well hold the key to understanding epidemiologic trends.

Introduction

Since the discovery of the first HIV/AIDS case more than three

decades ago, enormous progress has been made in understanding,

treating, and preventing the infection. For example, there is now

solid evidence that antiretroviral therapy (ART) taken by either

HIV-infected or uninfected individuals can prevent HIV trans-

mission [1–4]. Nevertheless, the epidemic keeps surprising us. In

particular, it has been noted that in many countries, notably in

highly affected sub-Saharan Africa, but also in India, HIV

prevalence is dropping fast [5]. In Zimbabwe, once one of the

worst affected countries, HIV prevalence levels have halved over

the past 12 years, dropping from 30% in 1998 to 15% in 2011 [6].

However, Zimbabwe is certainly not the first country to

experience such an epidemiological change, as in east and central

Africa, declines have been observed as early as the mid-1990s

(Figure 1A) [7–9].

While these drops in HIV prevalence are dramatic, underlying

changes in HIV incidence must have occurred several years earlier

and more rapidly (Figure 1B). This is because with an average

survival time of approximately ten years (in the absence of

treatment), even a sudden complete interruption in transmission

would translate into a gradual decline in prevalence. In Nairobi,

changes in infection risk seemed to occur in high-risk populations

first, while HIV prevalence in the general population was still

stable or increasing. In 1986, over 80% of sex workers were

HIV-infected, but this declined to less than 50% after 1997. Also,

incidence dropped dramatically in these sex workers [10]. In these

women, the per–unprotected-sex-act rate of HIV acquisition fell

over 4-fold between 1985 and 2005, and in a recent analysis of

2008–2011, HIV incidence was 2.2% in over 1,500 person-years

of follow-up (McKinnon et al., submitted).

This rapid decline has occurred at a time when we still do not

fully understand why HIV struck sub-Saharan Africa so excep-

tionally hard in the first place. At its peak, HIV prevalence in

several countries in Africa exceeded more than 20% of the adult

population, although there was a lot of heterogeneity both within

and between countries [11]. The epidemic onset in sub-Saharan

Africa was also often extremely rapid, with estimated prevalence

doubling rates of as little as one year, implying that each HIV-

infected person annually infects, directly or indirectly, another

(susceptible) individual [12]. With transmissions apparently

occurring over the entire infected period [13], this would seem

to suggest high levels of the basic reproduction number R0 (i.e., the

average number of secondary cases generated by an infected

individual, over the duration of his infection, when all contacts are

uninfected). This, however, seems to conflict with what studies

have shown about HIV transmission (in)efficiency. For example,

some 50% of HIV-affected couples are still discordant when

discovered, and during follow-up the annual seroconversion rate of

the HIV-negative partner has ranged from 2% to 12% [14–16].

With an average—untreated—survival after HIV infection being

approximately ten years, this would seem to suggest that, in the

heterosexual population, R0 cannot be much larger than one. With

such a low R0, generalized heterosexual epidemics either cannot

occur or only spread slowly [17]. This is, in fact, also what

happened outside of sub-Saharan Africa.

This discrepancy between high-prevalence sub-Saharan Africa

countries and the rest of the world has sparked many theories and

debates about what made Africa ‘‘special.’’ Indeed, there is still no

full consensus about the reasons why various African countries
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Figure 1. Adult (15–49) HIV prevalence (A) and annual incidence (B) in Zimbabwe, Kenya, Malawi, and Mozambique, 1990–2009 [8].
doi:10.1371/journal.pcbi.1003459.g001
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experienced severe generalized HIV epidemics while most of the

rest of the world did not. Most of the hypotheses focus on high-risk

sexual behavior such as rapid partner change and low condom

use, aggravated by transmission co-factors, notably other sexually

transmitted infections that are spread by the same high-risk sexual

behavior. Undoubtedly, highly connected sexual networks gener-

ated by unprotected, often transactional, sex with many different,

frequently concurrent, partners are common in Africa [18–27].

This is also shown by the high levels of conventional, bacterial

sexually transmitted infections (STIs) as well as HSV-2 in sub-

Saharan Africa, infections that have been implicated as transmis-

sion co-factors, although their exact role is still moot [28–34].

These risk factors have been incorporated in many mathematical

models of the HIV epidemic, models that have also been used to

interpret the recent decline in HIV transmission. Several modeling

studies interpreted the fall in HIV transmission, therefore, as a

decline in the very factors that made sub-Saharan Africa special.

However, as throughout history epidemics have always come

and gone, even without interventions, we should consider the

possibility that the decline in HIV transmission may also have

‘‘natural’’ causes. Here we discuss findings, both epidemiological

and from the basic sciences, which are currently ignored in HIV

transmission models and suggest that some of the dramatic decline

in HIV incidence may be part of the natural dynamics of the HIV

epidemic and might have occurred even in the absence of any

major behavior change. To fully explore the impact of these

findings, they should be incorporated in future modeling studies.

Current HIV Models, Common Assumptions, and
Their Limitations

Mathematical modeling of infectious diseases is a highly

developed science or technology, and software to accelerate the

development and implementation of models is increasingly

available [35–39]. For modeling complex situations that are

difficult to capture in finite sets of (differential) equations,

individual- or ‘‘agent-’’ based micro-simulation, such as used in

STDSIM and SimulAIDS, is now well developed [40–42].

Advanced methods for fitting models to data and to incorporate

uncertainty into inference and predictions have been used [43,44].

From the very beginning of the HIV epidemic, mathematical

modelers, together with epidemiologists and statisticians, have

been heavily involved in shaping our understanding of the

infection and its transmission [45]. They have also been

instrumental in the interpretation of observed trends, in planning

of prevention strategies, in guiding data collection, and in

developing scenarios for the future course of the epidemic [46–48].

Most models, irrespective of their implementation and mathe-

matical detail, incorporate a constant per-sexual-contact transmis-

sion risk, which may depend on the phase of infection of infected

partners, and STI cofactor effects that increase this risk. Given

these parameter values, infection can spread through dynamic

networks modeled with variable complexity. This constant risk

assumption implies that ‘‘pre-emptive saturation’’ is the only

density-dependent mechanism at play [49]. That is, transmission

will continue to increase until so many sex partners of HIV-

infected individuals are already infected that (on average) each

HIV-positive individual only infects one still uninfected individual.

The latter condition defines endemic equilibrium, which will set in

and remain ‘‘forever’’ unless behavior change or interventions shift

this equilibrium to lower levels. Moreover, in homogeneous

populations this equilibrium will be reached after a continuously

increasing prevalence with perhaps a minor ‘‘overshoot,’’ as

mortality lags—by about a decade—behind incidence [50]. Thus,

when incidence declines, the common fixed risk per sexual contact

assumption implies the conclusion of substantial sexual behavior

changes.

As in various countries the decline in HIV transmission started

prior to the year 2000, major biomedical interventions such as

antiretroviral therapy (ART) or male circumcision campaigns

cannot explain the decline in HIV transmission. Most current

models thus necessarily interpret the epidemiological change as

evidence of (large) changes in sexual behavior or depletion (by

higher AIDS mortality rates) of the group with the highest rates of

partner change or as proof of success of behavioral interventions

[51–54]. Several modeling studies have indeed come to this

conclusion, although it is unclear whether direct empirical studies,

mostly self-reported and therefore potentially biased, support

commensurate declines in risk behavior [55–69]. While such

behavior changes undoubtedly contributed to the decline in

transmission [70], they may not be the only explanation. That

other factors may play a role is supported by the observation that

population behavior change appears to fail to explain the early,

rapid declines in risk per unprotected contact among Kenyan sex

workers [10].

Non-linearity of the Relationship between the
Number of HIV Exposures and Infection Risk

It is widely believed that HIV transmission is very inefficient.

On average, a very small proportion of sexual encounters between

infected and uninfected partners lead to transmission [71]. When

transmission does take place, infection is often the result of a clonal

expansion of a single founder virus, and the probability of any one

virion (virus particle) successfully infecting a person must be on the

order of one in a billion [72]. This is corroborated by SIV (monkey

HIV) infection experiments, which often show a single cluster of

infected cells in the female genital tract in the first few days of SIV

infection [73]. Special factors, such as an STI cofactor effect,

therefore have to be invoked to plausibly explain and model the

observed epidemics.

Potentially misleading, however, may be the concept of per-

contact transmission risk. Several observations disprove a constant

per-coitus risk of transmission [74,75]. Downs and Vincenzi,

among the first authors to study this, have shown the relationship

between the number of sexual contacts and risk of HIV

transmission to be highly non-linear. In their study involving

563 heterosexual partners of HIV-infected subjects, the risk of

transmission was 10% for those with less than ten unprotected

contacts and increased to only 23% after 2,000 unprotected

contacts [76,77]. Thus, the first few sexual exposures are clearly

more dangerous than subsequent ones. Sex worker contacts of

Thai military conscripts were also associated with high per-contact

risk, as were contacts among adult film actors [78–80]. Low-dose

mucosal SIV challenge experiments in non-human primates

suggest a similar phenomenon; while some monkeys become

infected quite rapidly, others require far more challenges, at times

with higher virus doses, to achieve infection [81]. It is unclear,

however, how to unambiguously interpret this non-linearity with

major implications for modeling and model predictions. Interest-

ingly, another transmission non-linearity exists in the relationship

between viral load and the risk of infection at each sexual contact.

Each 10log increase in plasma HIV-1 RNA increases the per-act

risk of transmission by 2.9-fold; that is, the transmission risk seems

to be approximately proportional to the square root of the viral

load [82]. A similar non-linear relationship appears to exist

between HIV-1 RNA in the genital tract and the risk of

transmission to an uninfected partner [83].
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Perhaps, if (cumulative) risk is determined by numbers of

virions to which a person is exposed, irrespective of the number

of coital acts, then the non-linearity between number of contacts

and transmission risk may well reflect the same biological

phenomenon as between per-coitus viral dose and transmission

risk.

Biological Mechanisms of the Non-linearity in HIV
Transmission

Below we present some mechanisms that may account for the

non-linearity in the relationship between exposure and transmis-

sion risk.

Susceptibility of the HIV-negative partner
As with everything biological, susceptibility to infection is likely

to vary both among and within individuals. Early in the HIV

epidemic, it was discovered that individuals homozygous for the

D32 mutation of the CCR5 gene were practically resistant to HIV

infection [84]. Other genetic factors also appear to play a role in

susceptibility and resistance, but much of the genetics and biology

of resistance have remained elusive, and behavior and acquired

factors may also be important [85–89]. This raises the issue of

whether the increased transmission during acute infection is totally

due to an increased infectivity of the infected partner. Acute

infection in the HIV-positive partner is often the first exposure of

the negative partner to HIV, and it seems logical that the most

susceptible individuals get infected first and fast.

In statistical terms, when such heterogeneity is taken into

account, the duration to infection (in terms of exposure) is a

mixture of exponential distributions, with characteristically

declining hazard rates; i.e., risk appears to decline with the total

number of previous exposures [90]. As people can seroconvert

only once, heterogeneity in susceptibility is notoriously hard to

measure directly, but studies are highly suggestive that it can be

substantial. Sex workers in Nairobi in the 1980s reached very high

(.80%) infection levels, but the risk of seroconversion was strongly

negatively associated with duration of exposure and there was even

evidence of a small, highly resistant subgroup [91]. In our most

recent analysis, this decrease in risk was 24% per year of exposure

(McKinnon et al., submitted). The same has been observed in

other sex worker cohorts [92]. Whether heterogeneity in

susceptibility between individuals offers a totally satisfactory

explanation of the rapid HIV epidemiological change is still

unclear. By itself, it seems to fail to satisfactorily explain the onset

of the epidemic. It may be of interest that for the same final size of

the epidemic, heterogeneity in susceptibility could give rise to

faster epidemic onset. Perhaps because of the difficulty of

obtaining empirical estimates of the level of heterogeneity in

susceptibility, this variable has usually been ignored in HIV

epidemic models. Yet, heterogeneity in susceptibility and resis-

tance can have a major effect on the course of the epidemic. In

fact, models that incorporate this heterogeneity predict that

prevalence peaks and then drops, as actually observed (Figure 2)

[50]. Heterogeneity in susceptibility in its most extreme form,

where only a subset of individuals are (highly) susceptible, and the

rest minimally susceptible, may also lead to a fragmentation of

sexual networks as all connections (edges) via non-susceptibles

(nodes) are effectively removed. Thus, sexual networks consisting

of loosely connected ‘‘cliques’’ would fragment into disjointed sub-

networks, with obvious implications for HIV spread. Heterogene-

ity in susceptibility over time, within individuals, almost certainly

also exists but, except in the context of STIs, has remained largely

elusive.

Immunity
Current mathematical models of HIV ignore the possibility of

naturally acquired immunity. There is evidence of (cellular and

other) immune responses to HIV among exposed but uninfected

individuals, some of which are associated with reduced infection

risk, but whether such responses are evidence of (long-term)

protective acquired and/or adaptive immunity is unclear [93–97].

The success of the RV144 vaccine trial in Thailand should also

alert us to the possible existence of forms of protective immunity to

HIV [98,99]. Immunity could develop, for example, after

exposure to defective virions, i.e., virus particles unable to establish

a reproductive infection. Given these data, the non-linearity of the

relationship between number of contacts and transmission risk

may also be due to such acquired immunity, including mucosal

immune mechanisms such as HIV target cell availability, for

example [100]. If so, this immunity perhaps may only offer

protection against one of several strains, or subtypes (clades) of the

virus, with implications for the risks of partner change [101].

Another form of immunity that may be relevant is alloimmu-

nity, i.e., immunity to (HLA) antigens expressed by sex partners.

Early studies demonstrated potent anti-HIV activity induced by

allo-immunization in humans [102]. There is evidence that

transmission often takes place by HIV hitching a ride in cells.

As such cells express HLA molecules of the host, alloimmune

responses may be protective [103]. Evidence, albeit somewhat

conflicting, for the importance of these responses comes from both

mother-to-child and sexual transmission studies [104–108].

With the high strain diversity of HIV and the extremely high

degree of polymorphism of HLA antigens, one would expect

regular partners of HIV-infected individuals to benefit much more

from these types of immunity than (say) sex workers whose

immune systems have to cope with widely divergent HIV strains

and HLA antigens and whose alloimmune responses may even be

compromised by their high levels of concurrency [109]. If the non-

linearity of risk is due to some form of specific immunity, then this

would imply much greater risks associated with multiple and/or

concurrent partnerships than if it were due to, for example, innate,

broadly protective, susceptibility factors. New HIV-positive

partners would entail a very high risk during the first couple of

contacts, whereas innate resistance or susceptibility would not

discriminate between contacts with the same and with different

HIV-infected partners.

Interestingly, with alloimmunity, the risk associated with acute

phase infection of a seroconverting regular partner would be much

lower than the risk associated with a new seroconverting partner,

as it (the alloimmunity) is acquired before HIV exposure. This

would not be the case with immunity against the virus itself. It

seems likely that this may affect the relative importance of

concurrent versus new partnerships. To our knowledge, no study

has explored the implications of these types of immunity for the

spread of HIV. Infections for which immunity is a density-

dependent mechanism, such as measles, are often characterized by

epidemiological patterns of (periodic) violent outbreaks, followed

by subsequent declines when high levels of immunity in the

population (herd immunity) form an impediment to ongoing

transmission. Therefore, the epidemiological implications of HIV

immunity merit further study.

Heterogeneity in infectiousness
As viral load varies among people, one can expect some

individuals to be greater shedders of infectious virions, and thereby

more infectious, than others. Early-stage, acute infection has

been associated with high viral loads and high infectiousness, and

this seems to be the preferred ‘‘consensus’’ interpretation of the
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non-linearity of the relationship between exposure and risk. This

acute infection period (first few months) has been estimated to be

up to 26 times as infectious as the subsequent stage of infection

[13,110]. Yet, paradoxically, the elevation in transmissibility

observed during acute infection appears to be greater than would

be expected based on viral load alone (although not all virions may

be equally infectious), and direct evidence implicating acute

infections only comes from a single study that ignored alternative

explanations and whose methodology has been questioned [111–

113]. Nevertheless, several mathematical models have incorporat-

ed this aspect of transmission and even made quite definitive

estimates about the role of acute infections in overall HIV

transmission [114]. Unfortunately, the methodology used for

estimating this increased transmissibility completely ignores factors

such as heterogeneity in susceptibility (see above). Proper

estimation of the risk associated with acute infection per se would

require a comparison between new, HIV-naı̈ve partners of HIV-

infected individuals in the acute and post-acute phase, which has

never been done. Other, less understood, sources of heterogeneity

in infectiousness also appear to exist. In a cross-sectional study

from South Africa, viral loads varied by a factor of more than

10,000, but the factors underlying this heterogeneity are not

completely clear [115]. Some factors have been recognized; for

example, HLA-B57 and HLA-B27 genotypes have been associated

with better viral control, and this leads one to expect that

individuals with these HLA types are, on average, less infectious

than others [116]. However, there is also within-person variation,

and individuals may temporarily shed more infectious virions than

usual [117]. Some anecdotal ‘‘superspreading’’ events suggest that

heterogeneity in infectiousness can be substantial. A Zairian man

in Belgium infected 11 out of 19 female sex partners, often after a

single sexual contact [118]. Another case infected at least 11 of his

many female sex partners [119]. It is unclear what this implies for

HIV transmission in general, or the difference between transmis-

sion in Africa and other parts of the world. Africa has higher rates

of tropical infections, including malaria, which may increase HIV

viral load and transmission [120,121]. Heterogeneity in infec-

tiousness, as with heterogeneity in susceptibility, would explain

why some exposed individuals seroconvert after a few sexual

contacts, while others never acquire infection.

Conclusions

We have identified several aspects of HIV transmission that may

provide additional, alternative reasons for the rise and fall of HIV

in high-prevalence countries in Africa. Current models may be

misleading because factors such as heterogeneity in susceptibility,

which may have substantially impacted the course of the HIV

epidemic, have been ignored due to a lack of precise quantitative

estimates. Key observations, such as non-linearity of the relation-

ship between the number sex contacts and HIV transmission and

the high risks associated with a seroconverting partner have

consistently been interpreted, perhaps misinterpreted, in only a

single way, while other explanations, with different epidemiolog-

ical impacts, have been discounted. Thus, when incidence

declines, the common assumption of fixed risk per sexual contact

Figure 2. The projected course of the HIV epidemic (prevalence) under simplified assumptions about heterogeneity in
susceptibility to HIV infection [50]. For comparison, the dashed curve shows the projected course in the absence of such heterogeneity, but with
similar final size of the epidemic.
doi:10.1371/journal.pcbi.1003459.g002
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favors the conclusion of substantial changes in average sexual

behavior.

What would our ideas imply for modeling? First, uncertainty in

model structure, more than uncertainty in parameter values,

dominates model uncertainty, and modelers should be aware of

qualitatively different interpretations of available data. Micro-

simulation can be used to effectively model complex, non-linear

processes, in contrast to most models consisting of sets of

differential equations. Modelers should explore alternative inter-

pretations of available data and, together with epidemiologists and

basic scientists, try to formulate empirical studies to discriminate

between these interpretations. Scientific journals and reviewers,

rather than encouraging conformity, should encourage and invite

debate and dissenting interpretations of epidemiological studies.

Understanding HIV’s rise and fall could offer important lessons as

this and future epidemics unravel.
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